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1  | INTRODUC TION

Species distribution models (SDMs) are commonly used to pre-
dict un-sampled areas or new environmental conditions (Elith & 
Leathwick,  2009). Joint species distribution models (JSDMs) are 
an extension of standard correlative SDMs that allow multiple spe-
cies to be modelled simultaneously while accounting for species 

correlations not explained by available environmental predictors, 
for example, due to species interactions or important missing co-
variates (Clark et al., 2017; Golding et al., 2015; Kissling et al., 2012; 
Ovaskainen, Roy, et al., 2016; Pollock et al., 2014). Despite increasing 
adoption of JSDMs in the literature, it remains unclear how predic-
tions of JSDMs differ from those of standard SDMs, and how specifi-
cally JSDM predictions can be used to address different questions in 
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Abstract
1.	 Joint species distribution models (JSDMs) simultaneously model the distributions 

of multiple species, while accounting for residual co-occurrence patterns. Despite 
increasing adoption of JSDMs in the literature, the question of how to define and 
evaluate JSDM predictions has only begun to be explored.

2.	 We define four different JSDM prediction types that correspond to different as-
pects of species distribution and community assemblage processes. Marginal pre-
dictions are environment-only predictions akin to predictions from single-species 
models; joint predictions simultaneously predict entire community assemblages; 
and conditional marginal and conditional joint predictions are made at the species 
or assemblage level, conditional on the known occurrence state of one or more 
species at a site. We define five different classes of metrics that can be used to 
evaluate these types of predictions: threshold-dependent, threshold-independ-
ent, community dissimilarity, species richness and likelihood metrics.

3.	 We illustrate different prediction types and evaluation metrics using a case study 
in which we fit a JSDM to a frog occurrence dataset collected in Melbourne, 
Australia.

4.	 Joint species distribution models present opportunities to investigate the facets 
of species distribution and community assemblage processes that are not possible 
to explore with single-species models. We show that there are a variety of differ-
ent metrics available to evaluate JSDM predictions, and that choice of prediction 
type and evaluation metric should closely match the questions being investigated.
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ecology and conservation (Ovaskainen, Abrego, et al., 2016; Zhang 
et al., 2018; but see: Norberg et al., 2019).

Modelling distributions of single species with correlative SDMs 
ignores the impacts of species interactions, which potentially bi-
ases estimated coefficients and resultant predictions (Kissling 
et  al.,  2012; Wisz et  al.,  2013). There have been attempts to ac-
count for biotic interactions by using other species' occurrence 
states as predictor variables alongside abiotic variables (Araújo & 
Luoto, 2007; Leathwick & Austin, 2001; Meier et al., 2010; Pellissier 
et al., 2010), or by constraining predicted distributions to observed 
or predicted distributions of species on which the target depends 
(Schweiger et al., 2012), but these approaches are restricted to uni-
directional interactions (Kissling et al., 2012) and require that distri-
butions of the non-target species are known a priori or estimated 
using analogous single-species SDMs. Stacked species distribution 
models (SSDMs) combine, or stack, multiple single-species SDMs 
to estimate community structure and species richness (Gelfand 
et al., 2005; Mateo et al., 2012; Parviainen et al., 2009). Yet, it has 
been suggested that, because they do not account for species in-
teractions, SSDMs tend to overpredict species richness (Calabrese 
et al., 2014; Guisan & Rahbek, 2011; Pineda & Lobo, 2009; Thuiller 
et al., 2015). By accounting for interactions between multiple spe-
cies, the expectation is that JSDMs might allow for more accurate 
predictions. The captured interactions might be true biotic interac-
tions, or reflect the effect of relevant missing predictors.

An important decision when aiming to obtain predictions from 
a JSDM is defining what to predict, based on the JSDM's multivari-
ate output. In a single-species SDM, the focus of prediction is clear: 
some feature of the target species (presence/absence, abundance, 
etc). Multivariate JSDMs, however, have multiple response variables 
(one per species), all of which are potentially correlated. Prediction 
can therefore be approached in several ways. For instance, we may 
aim to predict community composition at sites where we have no 
knowledge of distributions, or, we may be interested in exploring 
how having data on the distributions of some species changes our 
prediction for a focal species.

Once we have a prediction, we need to evaluate it. Even ill-fit-
ting models can generate predictions, and poor predictions can 
hamper species management. More broadly, by evaluating predic-
tions we can use predictive performance to assess which combina-
tions of environmental variables best predict species distributions, 
compare performance between different modelling approaches 
and assess the reliability of the predictions we generate (Guisan & 
Zimmermann, 2000; Lawson et al., 2014). How do we approach this 
for JSDMs? The substantial literature on the evaluation of SDM pre-
dictions (Fielding & Bell, 1997; Lawson et al., 2014; Liu et al., 2009) 
covers a wide variety of metrics, but are they appropriate in a 
multi-species context? Are the most common metrics used for sin-
gle-species SDMs (such as AUC) still the most relevant? JSDMs can 
predict community assemblages, which opens up a suite of poten-
tial evaluation metrics in the form of the dissimilarity indices widely 
used in community ecology (Legendre & De Cáceres, 2013). What 
insight can be gained from these additional metrics?

Our article outlines different types of prediction from JSDMs. 
Marginal predictions are environment-only predictions that average 
over the occurrence and co-occurrence patterns of other species, and 
would be the most familiar to users of single-species SDMs. Joint pre-
dictions simultaneously predict the occurrence of multiple species while 
accounting for environmental responses and species correlations. Both 
prediction types (marginal and joint) can be calculated conditional on the 
known occurrence state(s) of one or more species in the community. We 
outline which evaluation methods are appropriate for different predic-
tion types. Finally, we fit a standard JSDM to a frog occurrence dataset 
from Melbourne, Australia. Our case study is not intended to authorita-
tively compare JSDM performance, which would require multiple data-
sets and modelling methods, but rather to provide practical examples of 
the different types of JSDM predictions and evaluation metrics.

2  | MATERIAL S AND METHODS

2.1 | Joint, marginal and conditional probabilities

Probability theory defines the relationships between the joint, con-
ditional and marginal probabilities. Considering the presence/ab-
sence of two species at a single site, let A denote the presence of 
species A and B denote the presence of species B (and conversely Aʹ 
and Bʹ would denote the absence of species A and B respectively). 
The joint probability of both species being present is:

where Pr(A|B) is the (conditional) probability that species A is present 
given species B is present, and Pr(A) is the marginal probability of spe-
cies A being present.

The two-species scenario can be extended to more species to 
consider the relationship between the joint probability of occur-
rence and the probability of presences (or absences) of a subset of 
the species conditional on the presence (or absence) of the comple-
ment of species. In a four-species scenario:

Here we define Pr(A, B|C, D) as a joint conditional probability (the 
probability of the joint occurrence of species A and B at the site, con-
ditional on the presence of both species C and D). Pr(A|B, C, D) is a 
conditional probability (the probability of the occurrence of species A 
at the site conditional on the presence of species B, C and D).

2.2 | Joint SDMs

Most occurrence-based JSDMs are built on the foundation of the Chib 
and Greenberg (1998) multivariate probit regression model. In what 

(1)

Pr(A,B) =Pr(A|B) ⋅Pr(B)

=Pr(B|A) ⋅Pr(A),

(2)

Pr(A, B, C, D) =Pr(A, B|C, D) ⋅Pr(C, D)

=Pr(A|B, C, D) ⋅Pr(B, C, D).
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follows, we focus on the multivariate probit model formulation, though 
the same principles can be applied to the multivariate logistic and latent 
factor models that have also been used as JSDMs. For this model, the 
occurrence state (present or absent) of species j, for j = 1, …, J, at a site 
i, for i = 1, …, n, is yij and modelled via a normally distributed latent vari-
able, zij, with yij equal to 1 when zij > 0, and 0 otherwise (see Figure 1a 
for a visual representation). This latent variable is not to be confused 
with the latent variable/latent factor concept of latent factor models 
(Warton et al., 2015; Wilkinson et al., 2019). The model is as follows:

where the latent variable, zij, is the sum of the linear predictor, μij, and 
the correlated residual error, eij. The linear predictor is the product of 
the measured environmental variables X i,., and their corresponding re-
gression coefficients � .,j, as in standard GLMs. Correlations in the resid-
ual error e i are captured in R, a symmetric and positive-definite matrix; 
its diagonal elements are 1 and its off-diagonal elements—the residual 
correlations between species—are restricted between −1 and 1. The 

elements of R reflect species co-occurrence patterns not described by 
the environmental predictors (i.e. species interactions or missing pre-
dictors). Standard deviations, and in turn variances, are constrained to 
equal 1 in probit regression, thus covariance and correlation matrices 
are equivalent. Because the variance of the latent variable distribu-
tion remains constant, the probability of presence for a single species 
is controlled only by the mean value of the distribution, μ (compare 
Figure 1a,b).

The correlation in ei makes the space of the latent variables mul-
tivariate. Therefore, the whole species community at a site is repre-
sented by a multidimensional latent normal random variable with as 
many dimensions as species. Integration over the relevant portion of 
the multivariate latent variable space yields the joint probability of 
observing a given configuration of the presence/absence of all spe-
cies at a site. For instance, in the two-species scenario (Figure 1c), 
the joint probability Pr(A, B) that both species A and B are present is:

where f
(
zA, zB

)
 is the joint probability distribution for the bivariate nor-

mal. The double integral calculates the probability in the region where 

(3)

yij=1 (zij>0)

zij=𝜇ij+eij

𝜇ij=X i,.� .,j

ei∼MVN(0, R)

(4)Pr(A, B)=Pr
(
zA>0, zB>0

)
=∫

∞

0 ∫
∞

0

f
(
zA, zB

)
dzAdzB,

F I G U R E  1   Visualisations of different normally distributed latent variables representing species probabilities of presence for two species 
(A and B). (a) The normally distributed latent variable, zA, with mean, μA, of 0.5 for species A. Pr(A) is equal to the area under the curve where 
zA > 0, shown here in grey. (b) The normally distributed latent variable, zB, with mean, μB, of −1 for species B. Pr(B) is equal to the area under 
the curve where zB > 0, shown here in grey. (c) The multivariate, normally distributed latent variable, zij, for a two-species scenario. The 
mean of the distribution, μij, on each species' respective axis is the same as their independent distributions in (a) and (b) and there is positive 
correlation of 0.75 between them. The contours of the probability distribution, the grey ellipses, indicate probability density values of 0.1, 
0.3, 0.5, 0.7 and 0.9. The numbers in the four corners are the probabilities of the multivariate latent variable integrated in that quadrant, 
for example, in the upper right quadrant; there is a probability of 0.16 that both species will occur at the site. (d) The multivariate, normally 
distributed latent variable from (c) truncated on the known occurrence state of species A
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both zA and zB are greater than zero (i.e. both species are present). In 
this two-species case, this probability can be visualised as the volume 
under the corresponding region of a three-dimensional surface (as in 
Figure 1c).

Similar to Equation 1, a joint probability distribution can be 
written as a function of conditional and marginal density functions; 
therefore, the joint probability in Equation 4 can be rewritten as  
follows:

Here the conditional probability distribution f
(
zA|zB

)
 reflects how 

likely different values of zA are (and therefore Pr(A) given a fixed value 
of zB). The marginal probability distribution f(zB) reflects how likely 
different values of zB are (and therefore Pr(B)) independent of the oc-
currence of species A). The order of items in the joint probability is 
inconsequential, so species can be marginalised out in any order (lines 
1 and 2 in Equation 5 are equivalent).

The marginal probability is obtained by summing the probabili-
ties for all community assemblages in which the species is present, 
regardless of the presence of the other species; in our two-species 
scenario Pr(A) = Pr(A|B) + Pr(A|Bʹ). Computing the conditional prob-
ability of presence of a species given the presence (or absence) of 
another species involves restricting the probability space to that 
indicating presence (or absence) of the other species. These prob-
ability distributions can be combined in different ways to define a 
number of prediction types for JSDMs. We next consider four types 
of JSDM prediction, mapping onto different ecological questions. 
These are illustrated in Figure 2.

2.3 | Prediction types

2.3.1 | Marginal prediction

Similar to single-species SDM predictions, marginal JSDM predictions 
are based solely on environmental attributes (they do not consider 
the presence or absence of the other species, see Figure 2i). This cor-
responds to predicting, for example, the occurrence of plant species 
A based solely on its response to environmental variables, such as soil 
nutrient and water availability, without accounting for co-occurrence 
patterns with species B–E in the community (e.g. Ovaskainen, Abrego, 
et al., 2016; Zhang et al., 2018). Marginal JSDM predictions can be 
calculated using the estimated regression coefficients and the cor-
responding covariate values at each site, as in a standard GLM. The 
sole difference between marginal predictions for JSDMs and those of 
single-species SDMs is that inter-species correlations are accounted 
for in the estimation of JSDM regression coefficients.

2.3.2 | Joint prediction

We can predict species community composition that accounts for 
both the environmental covariates and species co-occurrence, by 
using the joint probability distribution. This corresponds to pre-
dicting the assemblage of plant species A–E in a community si-
multaneously, while accounting for their individual responses to 
environmental conditions (e.g. soil nutrients) and co-occurrence pat-
terns of the species (e.g. Norberg et al., 2019; Ovaskainen, Abrego, 
et al., 2016).

Whereas the marginal prediction of a community at a given site 
can be represented by a single vector of probabilities (one for each 
species), the joint prediction instead yields a probability value for 
each possible realisation of the community composition (each real-
isation is a vector of 1s and 0s indicating the presence/absence of 
each species; Figure 2ii). With J species, the number of possible com-
munity assemblages is 2J. This number increases very quickly with  
J. While with three species there are eight possible assemblages, 
with 10 species there are 1,024, and with 20 species over a million. It 
is therefore generally infeasible to compute and store the probabili-
ties of all possible assemblages when evaluating the predictions. One 
alternative is to use the model to simulate community assemblages 
by taking random draws from the joint probability distribution. The 
frequencies of the simulated assemblages reflect the probability of 
plausible assemblages. Also, in some cases we are only interested 
in a subset of the probabilities. For instance, for model evaluation 
purposes, we only need to compute joint predictions for the species 
assemblages observed in held-out data.

2.3.3 | Conditional joint prediction

In some cases, we might be interested in estimating a species’ oc-
currence probability given the known occurrence state of other 

(5)

Pr(A, B) =∫
∞

0 ∫
∞

0

f
(
zA|zB

)
⋅ f
(
zB
)
dzAdzB

=∫
∞

0 ∫
∞

0

f
(
zB|zA

)
⋅ f
(
zA
)
dzBdzA.

F I G U R E  2   Five different prediction types possible with joint 
species distribution models. The boxes show the occurrence states 
of species A, B and C. Question marks denote the species being 
predicted. Empty boxes indicate that the occurrence state for 
those species is not informing the prediction, while 1/0 denote 
a known presence/absence state of species which is used to 
inform prediction. Prediction Type is the name of the prediction 
methodology, and Notation shows the corresponding probabilistic 
notation, following the definitions in Section 2.1

?
?
?
?
?

? ?

?
1

1 0
0

A B C
i

ii

iii

iv

v

Prediction Type Notation

Marginal

Joint

Conditional

Conditional joint

Conditional marginal

Pr(A)

C)B,Pr(A,

)C'B,|Pr(A

)C'|BPr(A,

B)|Pr(A
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species. If we know the correlation between species (estimated 
by the JSDM) and the occurrence state of some of those species, 
we can make a more informed prediction of the unknown occur-
rence state of the remaining species. This corresponds to predict-
ing plant species A–D in the community simultaneously when we 
know the occurrence state of species E, and leveraging that knowl-
edge to constrain the possible predicted assemblages (e.g. Taylor-
Rodríguez et al., 2017).

For each species with a known occurrence state, we can truncate 
the multivariate normal distribution over the latent variable in the 
dimension that represents that species, either to be positive if the 
species is present, or negative if it is absent (see Figure 1d for a visual 
representation). Because probability distributions integrate to one, 
truncating this distribution alters the probabilities of the remaining 
community assemblage possibilities. For instance, in our example, 
the marginal probability of species B, Pr(B), is 0.16 (Figure 1b), but if 
we know that species A is present, then the conditional probability 
of species B is Pr(B|A) = 0.23 (Figure 1d).

2.3.4 | Conditional marginal prediction

Conditional marginal predictions, which are simultaneously condi-
tional on and marginal to the occurrence states of the other species 
(Figure 2v), are another type of prediction that can be made with 
JSDMs. As per conditional joint predictions, we can make more in-
formed predictions by using the known occurrence state of other 
species; however, this method makes use of the updated marginal 
distribution of the remaining species. This corresponds to predict-
ing plant species Abased on its response to environmental variables 
(e.g. soil nutrients), leveraging information on the known occurrence 
state of species E, and still being independent of the remaining spe-
cies in the community B–D. This prediction type is also simple to 
represent; like marginal predictions, it can be stored as a vector of 
probabilities for each species.

2.4 | Evaluation metrics

To date, the choice of evaluation metric in the multi-species con-
text of JSDMs has not been thoroughly explored. In a single-species 
context, choice of metric depends largely on factors such as data 
type (e.g. presence–absence vs. presence-only) and prediction for-
mat (binary or probabilistic; Lawson et al., 2014). Here we consider 
traditional single-species metrics for JSDMs and new metrics that 
may be suitable. We broadly classify metrics for evaluating JSDM 
predictions into five groups, in terms of the aspects of performance 
on which they focus (see Table 1).

Threshold-independent metrics evaluate continuous predicted 
probabilities against observed presence–absence data. A widely 
used threshold-independent metric used in single-species SDMs is 
the area under the receiver operating characteristic curve (AUC), but 
other metrics include root mean square error (RMSE), the coefficient 

of determination (R2) and the Pearson's or point-biserial correlation 
coefficient.

Threshold-dependent metrics compare binary predictions against 
observed presence–absence data. This requires simplifying predicted 
values (which may be probabilities or some other metric) to binary out-
comes by considering them presences if they exceed a set threshold 
value, or absences otherwise. Then, a confusion matrix contrasts ob-
served and predicted occurrence states, and metrics derived from it. 
Examples include precision, sensitivity and true/false positive/negative 
rates. The value of thresholding continuous predictions has been de-
bated in the SDM literature (Freeman & Moisen, 2008; Guillera-Arroita 
et al., 2015; Liu et  al.,  2005), for prediction and evaluation (Lawson 
et al., 2014). How to determine the threshold value when binary con-
version is wanted is also debated. It is common to set the threshold at 
an arbitrary value of 0.5 (Freeman & Moisen, 2008), which provides an 
obvious decision threshold (i.e. the species is more likely to be present 
than absent) when predictions are calibrated estimates of probability 
of presence. Another frequent suggestion is to set the threshold to the 
observed prevalence of the species in question (Hanberry & He, 2013). 
In the multi-species context of JSDMs, a logical extension of this debate 
is whether to define community-wide or species-specific thresholds. 
However, Lawson et al. (2014) showed that by using a probabilistic con-
fusion matrix we can calculate threshold-dependent types of metrics 
without the need to threshold probabilistic predictions. To avoid any 
issues with the choice of threshold impacting our analysis, we followed 
this idea and used the probabilistic confusion matrix approach when 
calculating our threshold-dependent metrics.

Community dissimilarity indices are widely used in community 
ecology to quantify the dissimilarity between two realisations of 
species assemblages. Examples of common metrics are Bray–Curtis 
dissimilarity and Jaccard distance (Chao et  al.,  2004). These met-
rics compare predicted assemblages with observed assemblages 
and thus probabilistic predictions require thresholding or samples 
from a binomial distribution before these metrics can be evaluated 
on them.

Species richness metrics consider the ability of models to predict 
a single (but widely studied) aspect of community composition—the 
number of species present. We have evaluated species richness dif-
ference, defined as predicted minus observed richness, as it directly 
compares predictions with observed richness values.

Likelihood metrics assess model fit by computing the proba-
bility of observing a given community assemblage, assuming the 
model is ‘correct’ in its structure and parameter estimates. For 
reasons of numerical stability, it is common to work with the log of 
the likelihood. We use the term independent log-likelihood to rep-
resent the typical log-likelihood metric used in SSDMs. This metric 
assesses each species individually across all sites—computing the 
probability of observing that species' presence/absence observa-
tions—and then combines these into a single metric, assuming the 
species' distributions to be independent (i.e. the log-likelihoods are 
summed up). We can also define a joint log-likelihood that assesses 
all species simultaneously as an assemblage at each site, account-
ing for the correlation structure encoded in the JSDM formulation.
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2.5 | Case study

We illustrate the application of different JSDM prediction types 
and the appropriate evaluation metric classes with a case study in 
which we fit a JSDM to a presence–absence dataset of frog species 
in the Greater Melbourne area of Victoria, Australia (Parris, 2006). 
The dataset contains nine species, 104 waterbodies (sites) and three 

measured covariates (area, road density and presence of verti-
cal wall), and was previously analysed in Pollock et  al.  (2014) and 
Wilkinson et al. (2019). Species prevalence ranged from 0.02 to 0.52, 
and were mainly positively correlated with each other except for a 
single species negatively correlated with the rest. In our analysis, we 
standardised the two continuous variables and used fivefold random 
cross validation for model evaluation.

TA B L E  1   Summary of evaluation metrics for joint species distribution model predictions

Name

Applicable  
to binary  
predictions

Applicable to  
probabilistic  
predictions

Threshold-
dependent  
metric

Threshold-
independent  
metric

Community  
dissimilarity  
metric

Species  
richness  
metric

Likelihood  
metric

Accuracy/true skill statistic X X X

Area under the receiver operating 
characteristic curve (AUC)

X X

Bray–curtis dissimilarity X X X

Canberra index X X X

Cohen's Kappa X X

Diagnostic odds ratio X X X

F1 score X X X

False discovery ratio X X X

False negative rate X X X

False omission rate X X X

False positive rate X X X

Gower index X X X

Gower index (alternative) X X X

Jaccard distance X X X

Kendall rank correlation coefficient X X

Kulczynski index X X X

Log likelihood—independent X X

Log likelihood—joint X X

Mountford index X X X

Mean error (bias) X X

Mean square error X X

Negative likelihood ratio X X X

Negative predictive performance X X X

Pearson correlation coefficient X X

Positive likelihood ratio X X X

Positive predictive performance/
precision

X X X

R2/coefficient of determination X X X

Raup-crick dissimilarity X X X

Root mean square error X X

Spearman rank correlation 
coefficient

X X

Species richness difference X X X

Sum of squared errors X X

True negative rate/specificity X X X

True positive rate/sensitivity X X X

Youden's J statistic X X X
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We chose to use a standard multivariate probit regression JSDM 
(Chib & Greenberg, 1998) implemented with BayesComm v0.1–2 
(Golding & Harris, 2015) in R v3.5.2 (R Core Team, 2018). The JSDM 
applies independent normal priors, βk  ~  N(0, 100), on the regres-
sion coefficients and an inverse Wishart prior, with n + 2J degrees 
of freedom and scale matrix I, on the correlation coefficients. The 
model was fit by MCMC using a Gibbs sampler implemented in R 
and C++. We used a single MCMC chain of 11,000 samples, discard-
ing the first 1,000 as burn-in, to sample the posterior distribution. 
Model convergence was examined via visual assessment of trace 
plots for the posterior distributions. Model fitting and predictions 
were undertaken on The University of Melbourne's Spartan HPC in-
frastructure (Meade et al., 2017).

Once fit to the training data, the JSDM was used to predict to 
the held-out test data from fivefold cross validation. We calculated 
four prediction types: marginal, conditional marginal, joint and con-
ditional joint. The two conditional prediction types were undertaken 
under the assumption that we knew the occurrence state of one ran-
domly selected ‘high prevalence’ species in the community (Litoria 
ewingii). Conditional marginal prediction returned probabilistic pre-
dictions for the remaining eight species and conditional joint predic-
tion generated plausible assemblages of the remaining eight species.

While we have defined 35 metrics that can be calculated to 
assess different aspects of JSDM predictions, we present only a 
subset in this analysis for illustrative purposes. More detail on the 
metrics, including how they are calculated, which prediction types 
they are appropriate for, and how to interpret them can be found 

in Appendix  S1. Threshold-dependent and threshold-independent 
metrics are calculated on a per-species basis, whereas community 
dissimilarity and species richness metrics are calculated per-site. 
Most metrics can theoretically be calculated for either species or 
sites (as they are just comparing two binary vectors: observations 
and predictions) so this split is based on how they are historically 
used in ecological literature. Metrics were evaluated once for each 
of the 1,000 posterior samples drawn.

3  | RESULTS

The patterns of predicted probabilities of presence for each species 
obtained from the marginal and conditional marginal predictions 
both broadly matched the community assemblage observed in the 
held-out testing data (Figure  3). The AUC for most species using 
the marginal predictions was typically high (>0.88) with a standard 
deviation of <0.05 across all posterior samples. Exceptions were L. 
ewingii and Litoria peronii, which were predicted approximately ran-
domly with an AUC = ~0.5, and Litoria raniformis, which had no re-
corded presences in the held-out data and was thus incompatible 
with AUC calculations. Marginal predictions conditioned on the 
known occurrence state of L. ewingii returned higher AUC values by 
a mean of 0.03 (Figure 3). The largest AUC gain was 0.08 for Litoria 
verreauxii. For most other species-level evaluation metrics, we found 
the conditional marginal prediction to outperform the marginal pre-
diction, but in most cases the differences were relatively minor. We 

F I G U R E  3   Species-level predictions for the frog community at a subset of 10 sites in the testing dataset. The left-hand plot depicts 
the known occurrence state of the species in the testing dataset (black = present and white = absent). The middle plot depicts the median 
probability of presence from the posterior distributions of the marginal predictions. The right-hand plot depicts the median probability 
of presence from the posterior distributions of the conditional marginal predictions. These predictions are conditional on the known 
occurrence state of L. ewingii which are highlighted with the red border
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did observe some exceptions to this, such as an increased R2 value 
for L. verreauxii of 0.26.

The conditional marginal predictions outperformed the marginal 
predictions for the majority of community-level metrics. For most 
community dissimilarity metrics, the conditional marginal predic-
tions returned dissimilarity values between 0.05 and 0.1 lower than 
the marginal predictions which indicates a better estimate of com-
munity assemblages. Jaccard distance and Gower Index improved by 
0.09, and Bray–Curtis dissimilarity improved by 0.06.

The community-level approach of joint predictions yields proba-
bilities of specific assemblages occurring at a site or, as we present 
here, one can take random draws from the posterior distribution to 
generate plausible community assemblages at a site. In Figure 4, we 
show random draws from the joint and conditional joint prediction 
types for a single site in our held-out data. While joint predictions gen-
erally overpredicted the number of species found in the assemblage 
overall, conditioning on the known occurrence state (absence) of L. 
ewingii led to draws that were closer to the observed assemblage.

Community dissimilarity metrics were generally between 0.02 
and 0.05 higher for conditional joint predictions relative to stan-
dard joint predictions. Raup-Crick dissimilarity was the exception. 
Conditional joint predictions had values that were, on average, 0.25 
lower; however, with a standard deviation of 0.37 across all predic-
tions, this metric is possible struggling to calculate correctly across 
all draws. For the site considered in Figure 4, we observed improve-
ments of between 0.08 and 0.1 for the Bray–Curtis dissimilarity, 
Jaccard distance, Gower index and Canberra index.

As shown in Figure 4, in our dataset, both the joint and conditional 
joint prediction types overestimated species richness. The joint pre-
diction type had a mean species richness difference estimate of 0.95 
species in the held-out data, while the conditional joint prediction type 

had a mean estimate of 0.7 species per site. By conditioning the com-
munity-level prediction on the known occurrence state of a species, 
we are able to obtain a prediction closer to the observed data.

4  | DISCUSSION

We have reviewed and clarified the ways in which predictions of spe-
cies distributions can be approached with JSDMs. Our review high-
lights the additional functionality that JSDMs enable relative to simple 
stacking of single-species models. JSDMs have the following two main 
advantages: an ability to partition the effect of measured variables and 
residual correlations between species, and predictions of community 
assemblages that account for these correlations. By partitioning the 
effect of measured variables from residual correlations, which may 
include species interactions, JSDMs potentially enable more accurate 
estimates of environmental drivers of species’ distributions. In addi-
tion, by leveraging the information in the residual correlations, JSDMs 
can potentially better predict community assemblages.

The different prediction types defined here for JSDMs corre-
spond to different ecological aims. Marginal predictions correspond 
to the traditional single-species predictions; joint predictions predict 
entire assemblages; while the conditional and conditional marginal 
predictions let us inform these predictions with additional informa-
tion such as easy-to-detect indicator species. Different aims also 
imply different evaluation metrics, so each practitioner should de-
termine an appropriate prediction type and evaluation metric, or 
metrics, for their ecological question.

We have shown that conditioning on the known occurrence 
status of species can improve both species- and community-level 
predictions by exploiting the correlations estimated in JSDMs 

F I G U R E  4   Binary community-level 
predictions of the frog community 
at a single site in the testing dataset. 
Community-level predictions here are 
random draws from the multivariate 
normal distribution representing plausible 
community assemblages under the 
environmental conditions at the site 
(blue = present and white = absent). 
The left-hand plot depicts draws of 
plausible community assemblages from 
joint predictions. The right-hand plot 
depicts draws of plausible community 
assemblages from joint predictions, 
conditional on the known occurrence 
state of Litoria ewingii at the site 
(highlighted with the red border). The 
top row of both plots shows the known 
community assemblage in the testing 
dataset. The site considered in this figure 
corresponds to site 8 in Figure 3
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(Harris, 2015). The extent of this improvement is likely dependant 
on the strength of the correlation between the known species and 
other species in the community. We can expect that a species that 
is highly correlated with the known species (positively or negatively) 
would benefit more than a species that occurs more or less indepen-
dent of the known species. Therefore, benefits of JSDM predictions 
may be observed for only some species in the community, or to dif-
fering extents between species.

The JSDM tended to overpredict species richness for all predic-
tion types that account for correlations between species. For our 
case study of nine frog species, the JSDM predicted approximately 
one extra species per site. Zurell et al. (2019) similarly found that a 
JSDM overpredicted species richness compared to a SSDM. As the 
JSDM only overpredicted species richness for prediction types that 
account for residual correlations, the estimated correlations could 
potentially explain why the JSDM tended to overpredict. A largely 
positive correlation matrix between most species combined with 
high marginal occurrence probabilities, as seen here, could cause the 
JSDM to predict likely assemblages in excess of restrictions, such as 
site carrying capacities and/or dispersal limitations.

We have presented JSDM prediction methods using only a sin-
gle dataset for illustrative purposes. A more in-depth study using 
a wider array of datasets is required, as dataset properties likely 
influence the relative merits of the different prediction types. For 
datasets in which all species are reasonably prevalent, the expected 
performance difference between prediction types would be smaller 
than in scenarios of relatively sparse data, in which the additional in-
formation in joint or conditional prediction types could outperform 
the other prediction types. The value of additional information in 
the form of species co-occurrence will also be greater when cor-
relations between species are stronger; the known occurrence of a 
species will provide minimal benefit if it exhibits no correlation with 
the other species in a dataset. Future studies incorporating multiple 
case studies could also usefully evaluate different prediction types 
when making versus extrapolative predictions, as our case study 
only focused on the former type of evaluation and the latter has 
been shown to be more difficult (Norberg et al., 2019).

A small body of literature focuses on large-scale comparisons of 
JSDMs and single-species models. These studies have included many 
species and model types (Norberg et al., 2019; Zurell et al., 2019) but 
have not addressed all of the prediction types available to JSDMs. 
Norberg et al. (2019) used joint predictions but differently than presented 
here. First, they generated binary assemblage predictions but took the 
average of a large number of random draws to generate species-spe-
cific probabilities, which is an approximation of the marginal distribution. 
Second, they used joint predictions to generate species richness metrics 
equivalent to ours. Third, they used joint predictions and community dis-
similarity metrics to test predictions of species turnover between sites 
rather than to test community composition at a site. To our knowledge, 
no JSDM studies have yet included conditional or conditional marginal 
predictions, although they have been identified as desirable avenues of 
research (Blanchet et al., 2020; Norberg et al., 2019; Zurell et al., 2019). 
Evaluations with a broader array of JSDM implementations, prediction 

types and datasets are warranted. Both Norberg et al. (2019) and Zurell 
et al. (2019) included latent factor JSDMs in their comparisons, whereas 
we use a multivariate probit model. Norberg et al. (2019) found that the 
HMSC JSDM (Ovaskainen, Roy, et al., 2016) outperformed both other 
JSDMs and SSDMs, while Zurell et al. (2019) found that the boral JSDM 
(Hui, 2016) had similar results to those described here. Zurell et al. (2019) 
suggested that the poor performance of boral was a result of how the 
latent factor model is used when extrapolating predictions. Prediction 
using latent factor JSDMs can be performed in two ways: (a) marginalis-
ing over the latent factors by assigning the mean value of modelled sites 
to prediction sites when performing regression-style predictions and (b) 
defining the latent factor models in the same way as multivariate probit 
models (see Wilkinson et al., 2019 for notation), which lets one use the 
prediction types defined in this paper. This second method may be a 
better alternative to latent factor model prediction than marginalising 
over the latent factors.

5  | CONCLUSIONS

Joint species distribution models enable a variety of different ways 
to predict species distributions and community assemblages. Here 
we have defined environment-only marginal predictions, joint predic-
tions for whole community assemblages, and conditional marginal and 
conditional joint predictions that can also leverage additional infor-
mation on known species’ occurrences. Previous studies have either 
not considered prediction with JSDMs, focused on marginal predic-
tions, or considered only limited aspects of joint prediction. We have 
also shown that there are several classes of evaluation metrics that 
can be applied to subsets of these predictions. Ecologists seeking to 
use these prediction methods and evaluation metrics should consider 
which method and metric are most closely linked to the ecological 
question they are investigating. A larger comparison of prediction 
types that considers different JSDM implementations and multiple 
datasets is required to evaluate general performance of these models 
and prediction types.
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